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N O M E N C L A T U R E  

a, eddy diffusivity parameter [s-  i];  
c, concentration of diffusing gas [g moles/cm 3]; 
co, initial concentration [g moles/cm a] ; 
cs, interfacial concentration [g moles/cm 3] ; 
d, film thickness [.cmJ; 
D, molecular diffusivity [cm2/s]; 
k o local mass transfer coefficient 

- -  l D Oc [cm/s]; 
(cs--~o) Uy~= o 

~,  average mass transfer coefficient 

= 1/X~ k~dx [cm/s]; 

L~, mass transfer entrance length [cm]; 
E~, dimensionless mass transfer entrance length = 

(LeD)/(ud2); 
q, volumetric flow rate per unit perimeter [cm2/s]; 
Re, Reynolds number = 4q/v; 
Sh, local Sherwood number = k~d/D; 
Shin, mean Sherwood number = ~d/O; 
u, velocity [cm/s]; 

v'c', time averaged value of the fluctuating components 
of the v-velocity and concentration [g moles/cm 3]; 

x, distance in direction of flow [cm]; 
~, dimensionless axial distance = (xD)/(ud2); 
xl, limit of applicability of equation (9) [cm]; 
y, distance normal to the interface [cm] ; 
y, dimensionless normal distance = y/d. 

Greek letters 

fl, dimensionless diffusion parameter = (ad2)/D; 

q, 
0, 
0o, 

2 . eddy diffusivity = ~ [ cm/s ] ,  

dimensionless y --- y/2(Dx/u)l/2; 
dimensionless concentration, (c~ - c)/(c, - Co); 
concentration function defined by equation (7) 

2 " 
= _  ~ e-,2dr/; 

EJo 

0 D 

V, 

71", 

P, 

concentration function defined by equation (7); 
kinematic viscosity [cm2/s] ; 
= 3.1416; 
density [g/cm3]. 

UNDER usual operating conditions for gas absorption the 
controlling mass transfer resistance resides in the liquid 
phase. The work reported here is concerned with describing 
liquid phase mass transfer in terms of an eddy diffusivity 
for gas absorption in turbulent film flow (4q/v > 1200) for 
the case where the concentration profiles are not fully 
developed. The motivation for this work is that for many 
applications, such as liquid flow in packed columns, the 
film lengths or contact times between complete mixing may 
not be sufficiently long to achieve fully developed conditions 
in the liquid. In this case information regarding the entrance 
region mass transfer coefficient would be of interest. 

Liquid phase mass transfer across a free surface has been 
treated in terms of an eddy diffusivity by Levich [1], 
Davies [2] and King [3]. Lamourelle and Sandall [4] have 
experimentally determined the behavior of the eddy diffus- 
ivity near a free surface by absorbing four different gases 
into turbulent water films in a long wetted-wall column. 
These authors found that the eddy diffusivity varies as the 
square of the distance from the free surface. 

e = ay 2. (1) 

For water at 25°C, a was found to be 

a = 7.90 x 10 -s  Re 1"678. (2) 

Equation (1) is valid for the region adjacent to the free 
surface. The major resistance to mass transfer occurs close 
to the surface because of the large Schmidt numbers usually 
encountered in gas absorption, and thus it is important to 
know the eddy diffusivity accurately only for this region. 

The differential equation describing diffusion in two- 
dimensional, fully developed flow may be written in terms 
of an eddy diffusivity as 

80 a f 80) 
u(y/  = (3) 
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Equation (3) neglects axial transport and assumes no diffu- 
sion-induced velocity. The boundary conditions of interest 
are expressed as 

( i )  x = 0 ,  0 = I 

(ii) v = 0 0 = 0 (4) 

(iii) y = d, i:t),'i~ ' = O. 

The first condition expresses the fact that the liquid enters 
the mass transfer section completely mixed. The second and 
third conditions state that the concentration remains con- 
stant at the gas-liquid interface, and that no transport occurs 
across the solid boundary. 

Two simplifying assumptions are made in solving 
equations (3) and (4). It is assumed that the velocity, u, may 
be taken to be constant at its surface value. This assumption 
is made since the velocity gradient vanishes at the surface 
for the case of no shear at the interface, and since for 
the relatively short contact times in this study the absorbing 
gas will not penetrate very far into the film. It is further 
assumed that the eddy diffusivity given by equation (1) for 
the surface region is valid over the complete film thickness. 
This assumption should not lead to any significant error 
since the major resistance to mass transfer lies near the 
surface. 

A S Y M P T O T I C  S O L U T I O N S  

As pointed out by King [3], asymptotic solutions of 
equation (3) may be obtained for the case of very short 
contact times and for very long contact times. The contact 
time being defined as the film length divided by the surface 
velocity. In the limit of very short film lengths the absorbing 
gas does not penetrate far enough into the film for the eddy 
diffusion term to have an effect on the rate of mass transfer. 
In this case the Higbie penetration theory [5] describes the 
rate of absorption and the Sherwood number is given by 

Sh = ,,,. 1,"~. (5) 

For long film lengths the concentration profiles become 
fully-developed, and under these simplifying conditions 
Lamourelle and Sandall [4] integrate equation (3) to obtain 

Sh = 2. j ' / L ,a .  (6) 

A P P R O X I M A T E  ANAI .YTICAL S O L U T I O N  

An approximate solution valid for short film lengths may 
be obtained by considering a solution of the form 

0 = Oo(rl)+ xOt(q)  + . . .  (7} 

where 00 is the penetration theory solution. Substitution of 
equation (7)into equation (3) and neglecting terms of order x 
results in an equation for 0~. This equation was solved by 
afourth-order Runge Kuttaintegrat ionprocedure [6] using 
a shooting method. The quantity of interest is the derivative 
at the free surface which was found to be 

d0~ 
c i~  . = o = 0.5642 a/u. (8) 

With this value for 

d(--{! ~ = dq o' 

the Sherwood number is given by ':115 ] 
Sh = 2 i~ +0.5642fl.~ . (9) 

Equation (9)is an approximate analytical expression for the 
local Sherwood number which is expected to give good 
results for small 2. The region of applicability of equation (9), 
however, can only be determined by comparison with exact 
results. 

1t may be seen by inspection that equation (9) predicts 
a minimum in the Sherwood number and thus should not 
be applied beyond this minimum. This limiting value of k 
is found to be .7~ = 2-00/ft. 

NUMERICAL SOLUTION 

Equation (3) may be written in dimensionless form as 

~0 ~20 (9(7 
i'.~ = (l  + y2fl) , ~ "  + 21~y ;h" I I 0) 

In dimensionless form the boundary conditions become 

Il l  .\- = 0 ,  0 = 1 

( i i )  y = O, 0 = 0 ( 1 1 )  

(iii) P = 1. ? 0 / ~  = 0. 

Equations (10) and (11) were solved numerically by re- 
placing the derivatives with finite difference approximations. 
The Crank-Nicholson [7] procedure was used for the finite 
difference representation of equation (10). The resulting 
simultaneous algebraic equations were solved using the 
method of Thomas [8]. 

Figure 1 shows some results of the numerical calculations 
plotted as Sherwood number vs downstream distance. The 
c~rves in Fig. 1 show a smooth transition from the upstream 
asymptote to the downstream asymptote. For the special 
case of carbon dioxide absorption in water at 25'~C, the 
range in fl shown in Fig. 1 would cover Reynolds numbers 
from 1100 to 11 000. 

Figure 2 shows the approximate analytical formula, 
equation (9), compared to the exact results f o r / / =  50000. 
It is seen that the approximate relationship gives good 
agreement for small .f, the deviation increasing to about 
15 per cent as the fully-developed Sherwood number is 
approached. Similar behavior was found for the other 
values of fl for which numerical results were obtained. 

It is possible to empirically modify equation (9) to obtain 
better agreement with the exact results. If the form of 
equation {9) is retained but the numerical constant in the 
second term is considered to be an adjustable parameter, 
then equation (9) may be rewritten as 

Sh = 0"564/V/.~ + 0"1975 [;t ,~/.i:. I12) 

I . . . . . . . .  F u l l y  d e v e l o p e d  i ~ asymptote 

i ~  ~ . . . .  oo 
/ P e n e t r o * l O n  t h e o r y  - ~ k ~ : _  . . . . .  

L ~ -~ 2 -~_  ~ 

,o ' po ~ , c  ~' I c  c4 ,o • ,? 

7 

FIG. 1. Development of mass transfer coefficient in entrance 
region. 



I000  

Shorter communications 

5 0 0  

I00 

5C I I I I I I I I Jo- I ~ I I I I I I 
10 -6 I 5 -4 

FIG. 2. Comparison of approximation formula, equation 
(14) with exact result for fl = 50000. 
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Equation (12) predicts the Sherwood number to within a 
maximum deviation of 2'5 per cent for ~ varying from zero 
up to the entrance length over the entire range of fl in- 
vestigated (500 < fl < 500000). On the scale of Fig. 2, 
equation (12) can not be distinguished from the numerical 
solution. 

The mass transfer coefficient given by equation (12) may 
be integrated over the film length to give an expression 
for the mean Sherwood number based on the average mass 
transfer coefficient 

Shm = 1.128/~/~+0.1317fl~.~.  (13) 

Since equation (12) is valid up to the entrance length, it 
may be used to predict the entrance length. Substituting 
for the Sherwood number in equation (12) as 1.05 times 
the fully developed Sherwood number as given by equation 
(6) and solving for the entrance length gives an equation 
for the entrance length. 

E e = 2.56/fl. (14) 

As was mentioned previously, the eddy diffusivity given 
by equation (1) is strictly valid only in the surface region; 
however, it was used over the entire film thickness. The 
magnitude of the error incurred as a result of this assump- 
tion was estimated by carrying out the integration of 
equation (10) using a more realistic distribution in the bulk 
liquid. The eddy diffusivity expression of Reichardt [-9] was 
used for this calculation. For the absorption at 25°C of 
carbon dioxide in a vertical falling film of water with a 
Reynolds number of 5000 (fl = 54 700) it was found that the 
maximum difference in the calculated Sherwood numbers 
was 0.7 per cent. This maximum deviation occurred for the 
fully developed Sherwood number. Thus it is seen that, as 
expected, the use of equation (I) in the bulk liquid does not 
result in any significant error. 
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POOL-BOILING ARTIFICIAL-CAVITY EXPERIMENTS 

INCIPIENT boiling superheats of alkali metals measured by 
different experimenters, and usually even by the same 
experimenter, are sensitive to small variations in experi- 

* Also Chemical Engineering Department, Northwestern 
University, Evanston, Illinois 60201, U.S.A. 

mental conditions, such as the concentrations of trace 
contaminants, the presence or absence of small amounts of 
entrained or dissolved gas, and the prior history of the system 
up to the point where the first bubble is produced. Even 
with considerable precautions, the boiling of alkali metals 
from natural surfaces at low heat fluxes tends to be quite 
unstable, with large resulting variations in the incipient 


